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ABSTRACT 

Let R be a commutative ring with identity, and M  be (left) unitary R-module. In this paper we introduce a detailed 

study for the concepts small compressible modules and small retractable modules.   
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1. INTRODUCTION 

Let R be a commutative ring with identity and M be (left) unitary R-module. M is called small compressibleif M 

can be embedded in each of its non-zero small submodule[5]. M is called small retractable if ݉݋ܪோ(ܯ, ܰ) ≠ 0 for each 

non-zero small submodule N of M[5].where aproper submodule N of an R-module M is called small submodule (ܰ ≪  (ܯ

if for any submodule K of M with ܰ + ܭ = ܭ implies ܯ =  We establish the basic properties of these two concepts .[4]ܯ

in details. 

The main goal of this research is to study small compressible modules and small retractable modules. 

This research consists of three sections. In section two we investigate the basic properties of small compressible 

modules. In the third section we shall concerned with the basic properties of small retractable modules. Some 

characterizations of small retractable modules are given in the fourth section. 

2. SMALL COMPRESSIBLE MODULES 

The concepts of small compressible and small critically compressible modules are introduced in this section and 

many of their basic properties are studied, moreover we give some characterizations of these concepts. 

2.1 Definition[5]: 

An R-module M is called small compressibleif M can be embedded in each of its non-zero small submodule.  

Equivalently, M is small compressible if there exists a monomorphism from M into N whenever 0 ≠ ܰ ≪  .ܯ

A ring R is called small compressible if the R-module R is small compressible. That is R can be embedded in any of 

its non-zero small ideal. 

2.2 Examples and Remarks: 

(1) Every compressible module is small compressible and the converse is not true in general, for instance  ଺ܼas a 

Z-module is not compressible but ଺ܼis small compressible since 0 is only small submodule of  ܼ଺ . 

(2) LetM be a small compressible module such that every submodule of M contains a non-zero small submodule 

of M, then M is compressible. 
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Proof: Let 0 ≠ ܰ ≤ By hypothesis there exists  0 .ܯ ≠ ܭ ≤ ܰ, then ܭ ≪  since M is small compressible[6] ܯ

there exists0 ≠ ݂: ܯ → :݂݅  ,is a monomorphismܭ ܯ → ܰ is a non-zero monomorphism, where ݅: ܭ → ܰ be the incluction 

homomorphism then M is compressible. 

(3) The Z-module Q is not small compressible since ܼ ≪ ܳ and ݉݋ܪ(ܳ, ܼ) = 0. 

(4)  ܼସas a Z-module is not small compressible, since (2ത) ≪ ସܼ but ସܼ cannot be embedded in (2ത). 

(5) If M is a hollow module (every submodule of M is small in M). Then M is small compressible if and only if M 

is compressible. 

(6) Every simple module is small compressible but not conversely, since Z as a Z-module is small compressible 

but not simple. 

(7) Each of the rings Z and ܼ଺is a small compressible ring. 

(8)A module M is small compressible if and only if M can be embedded in Rx for each 0 ≠ ݔ ∈ ݔܴ and ܯ ≪  .ܯ

Proof: (⇒) Is obvious according to the definition (2.1). 

(⇐) Let 0 ≠ ܰ ≪ and let 0 ܯ ≠ ݔ ∈ ܰ.Then ܴݔ ≪ :݂ ,By hypothesis there is a monomorphism say.[4]ܯ ܯ →

ܯ so, the composition ݔܴ
௙
→ ݔܴ

௜
→ ܰ is a monomorphism with ݅: ݔܴ → ܰ is the inclusion homomorphism. Hence M is 

small compressible. 

(9)A small compressible module M is compressible if every cyclic submodule of M is small in M. 

Proof: Let 0 ≠ ܰ ≤ and 0 ܯ ≠ ݔ ∈ ܰ. Then by hypothesis ܴݔ ≪ :݂ so there is a monomorphism ܯ ܯ →  and ݔܴ

hence the composition ܯ
௙
→ ݔܴ

௜
→ ܰ is a monomorphism which implies that M is compressible. 

(10) Let M be a module in which every cyclic submodule of M is small in M. Then M is compressible if and only 

if M is small compressible. 

2.3 Proposition: 

A small submodule of a small compressible module is also small compressible. 

Proof:Let M be a small compressible module and 0 ≠ ܰ ≪ Let 0 .ܯ ≠ ܭ ≪ ܰ. Then  ܭ ≪  As M is small .[4]ܯ

compressible implies there exists a monomorphism, say ݂: ܯ → :݂݅ and therefore ܭ ܰ →  is a monomorphism where ܭ

݅: ܰ →  .is the inclusion homomorphism. Hence N is small compressible ܯ

2.4 Proposition: 

A direct summand of a small compressible module is also small compressible. 

Proof: Let ܯ = be a small compressible module and let 0 ܤ⨁ܣ ≠ ܭ ≪ ܭ Then .ܣ ⊕ 0 ≪  and hence there[6] ܯ

is a monomorphism say, ݂: ܯ → ܭ ⊕ 0 clearly 0⨁ܭ ≃ :݂ so ,ܭ ܯ → ܣ is a monomorphism and the composition ܭ
௝ಲ→ ܯ

௙
→  .is a monomorphism where ݆஺ is the injection of A into M. Therefore A is small compressible ܭ
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2.5 Proposition: 

Let ܯଵand ܯଶbe two isomorphic modules. Then ܯଵ is small compressible if and only if ܯଶis small compressible. 

Proof: Assume that ܯଵis small compressible and let   ߮ ∶ 1ܯ → ܯ  2  be an isomorphism. Let 0 ≠ ܰ ≪ ܯ 2 . 

Then 0 ≠ ߮ିଵ(ܰ) ≪ 1ܯ  .Put  ܭ = ߮ିଵ(ܰ). Let ݂: ܯ 1 → be a monomorphism and let݃ܭ
K

 then ݃: ܭ → ܯ 2  is a 

monomorphism and ݃(݇) = ߮൫߮ିଵ(ܰ)൯ = ܰ, hence ݃: ܭ → ܰ is a monomorphism. Now, we have the composition 

ܯ 2
ఝషభ

ሱ⎯ሮ 1ܯ
௙
→ ܭ

௚
→ ܰ. Let ℎ = ݂݃߮ିଵ is a monomorphism. Therefore  ܯଶ is small compressible. 

2.6 Remark: 

 A homomorphic image of a small compressible module need not be small compressible in general. 

For example, Z as a Z-module is small compressible and ܼ/4ܼ ≃ ସܼis not small compressible. 

2.7 Proposition: 

Let ܯ = ଵܯ݊݊ܽ  ଶbe an R-module such thatܯ⨁ଵܯ + ଶܯ݊݊ܽ = ܴ. Then M is small compressible if and only if 

 .ଶare small compressibleܯ ଵ andܯ

Proof: (⇒)Follows fromProposition(2.4). 

(⇐) Let 0 ≠ ܰ ≪ ܰ,Then by [9] .ܯ = ଶfor some 0ܭ⨁ଵܭ ≠ ଵܭ ≤ ଵand 0ܯ ≠ ଶܭ ≤ ܰ ଶ. And asܯ ≪  then ,ܯ

ଵܭ ≪ ଵܯ ≤ ଶܭ and ܯ ≪ ଶܯ ≤ ଵܯ :ଶ are small compressible, so there are monomorphisms݂ܯ ଵ andܯ by [6] But ܯ →  ଵܭ

and ݃: ଶܯ → :ଶ. Define ℎܭ ܯ → ܰ by ℎ(ܽ, ܾ) = ൫݂(ܽ), ݃(ܾ)൯. It can be easily checked that h is a monomorphism and 

hence M is small compressible. 

2.8 Corollary: 

The direct sum of a finite family of small compressible modulesܯ௜,݅ = 1,2, … . , ݊ with ∑ ௜ܯ݊݊ܽ
௡
௜ୀଵ = ܴ is also 

small compressible. 

2.9Definition[8]: 

An R-module M is called small prime if ܽ݊݊ܯ = ܽ݊݊ܰ for each non-zero small submodule N of M. 

2.10Definition[8]: 

A proper submodule N of an R-module M is called small primesubmodule if and only if whenever rR and  xM  

with (x) ≪M and rxN  implies either xN or r  [N:M]. 

2.11Definition[5]: 

An R-module M is called small uniform if every non-zero small submodule of M is essential in M. 

2.12 Proposition[5]: 

A finitely generated module M is small compressible if and only if M is small uniform and small prime. 

We introduce in the following theorem some characterizations of small compressible modules. 
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2.13 Theorem: 

Let M be an R-module. Then the following statements are equivalent: 

(1) M is small compressible. 

(2) M is isomorphic to an R-module of the form A/P for some prime ideal P of R and an ideal A of R containing P 

properly. 

(3) M is isomorphic to a non-zero submodule of a finitely generated small uniform, small prime R-module. 

Proof: (1)⟹(2) Let 0 ≠ ݉ ∈ ܴ݉ and ܯ ≪  Then Rm is small compressible by proposition (2.3). Therefore .ܯ

Rm is small prime by proposition (2.12). By (1), there is a monomorphism, say ݂: ܯ → ܴ݉ and hence M is isomorphic to a 

submodule of Rm. On the other hand, ܴ݉ ≃ ܴ/ܽ݊݊(݉) and M is small prime implies that ܽ݊݊(݉) is a prime ideal in 

R[8]. Put ܽ݊݊(݉) = ܯ Then .݌ ≃  .where A is an ideal of R contains P properly and P is a prime ideal of R ܲ/ܣ

(2)⟹(3) By (2), ܯ ≃ -for some prime ideal P of R and an ideal A of R containing P properly, so A/P is a non ܲ/ܣ

zero submodule of R/P. R/P is finitely generated R-module and R/P is a small prime R-module (since R/P is an 

integral domain).Also R/P is a uniform R-module and hence small uniform, hence (3) follows. 

(3) ⟹(1) By (3), M is isomorphic to a non-zero submodule of a finitely generated small uniform and small prime 

R-module, say ܯሗ , so ܯሗ  is small compressible R-module by proposition (2.12). Hence M is also small 

compressible R-module by proposition (2.5) which proves (1). 

In the following theorem we give a necessary condition for a quotient module to be small compressible. 

2.14 Theorem: 

Let N be a proper submodule of an R-module M such that [ܰ: [ܯ ⊉ :ܭ]  for each submodule K of M containing [ܯ

N properly. If M/N is small compressible, then N is small prime submodule of M. The converse holds if every cyclic 

submodule of M is small in M. 

Proof: Let ݎ ∈ ܴ, ݔ ∈ ,ܯ (ݔ) ≪ ݔݎ and ܯ ∈ ܰ. Suppose that ݔ ∉ ܰ. Thenܰ ⊊ ܰ + We claim that ேା(௫).(ݔ)
ே

≪ ெ
ே

. 

Suppose that ேା(௫)
ே

+ ௅
ே

= ெ 
ே  

, for some submodule L of M containing N. Hence ேା(௫)ା௅
ே

= ெ 
ே  

so 
(௫)ା௅

ே
= ெ 

ே  
implies that 

(ݔ) + ܮ = (ݔ) But .ܯ ≪ ܮ by hypothesis, therefore ܯ = and ௅ ܯ
ே

= ெ
ே

 which means that ேା(௫)
ே

≪ ெ
ே

 .Therefore there exists 

a monomorphism, say ݂: ெ
ே

→ ேା(௫)
ே

 (since ெ
ே

 is small compressible by hypothesis). It can be easily checked that for all 

ݎ ∈ ܴ, ݂ݎ ቀெ
ே

ቁ = ݂ ቀ௥ெ
ே

ቁ = ܰ), and since f is a monomorphism therefore  ௥ெ
ே

= ܰ and hence ܯݎ ⊆ ܰ implies that ݎ ∈

[ܰ:  .which proves that N is small prime [ܯ

Conversely, Assume that N is a small prime submodule of M. We have to show that M/N is small compressible. 

Let 0 ≠ ܰ/ܮ ≪ :ܰ] Then .ܰ/ܯ [ܯ ⊉ :ܮ] ݐ and hence there exists (by hypothesis) [ܯ ∈ :ܮ] ݐ  and [ܯ ∉ [ܰ:  Define .[ܯ

݂: ܰ/ܯ → ݉)݂ by ܰ/ܮ + ܰ) = ݉ݐ + ܰ for all ݉ ∈  .Clearly, f is a homomorphism. To prove f is a monomorphism .ܯ

Suppose that ݂(݉ଵ + ܰ) = ݂(݉ଶ + ܰ) with ݉ଵ, ݉ଶ ∈ ଵ݉ݐ Then .ܯ − ଶ݉ݐ = ଵ݉)ݐ − ݉ଶ) ∈ ܰ. But by hypothesis 

(݉ଵ − ݉ଶ) ≪ ݐ and N is small prime submodule of M, moreover ܯ ∉ [ܰ: therefore ݉ଵ ,[ܯ − ݉ଶ ∈ ܰ and hence ݉ଵ +

ܰ = ݉ଶ + ܰ. Hence f is a monomorphism which completes the proof. 
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The following are some consequences of theorem (2.14) 

2.15 Corollary: 

Let M be an R-module such that ܽ݊݊ܯ ⊉ :ܭ]  for all non-zero submodule K of M and every cyclic submodule [ܯ

of M is small in M. Then M is small compressible. 

2.16 Corollary: 

Let M be an R-module such that ܽ݊݊ܯ ⊉ :ܭ]  for each submodule K of M and every cyclic submodule of M is [ܯ

small in M. Then M is small prime if and only if M is small compressible. 

2.17 Corollary: 

Let M be a multiplication R-module, N be a proper submodule of M and every cyclic submodule of M is small in 

M. Then M/N is small compressible is and only if N is small prime submodule of M. 

Proof: As M is a multiplication module, then [ܰ: [ܯ ⊉ :ܭ]  .for all submodule K of M containing N properly[ܯ

So according to theorem (2.14) the result follows. 

2.18 Corollary: 

Let I be a proper ideal of a ring R such that every principal ideal of R is small in R. Then R/I is small compressible 

if and only if I is a small prime ideal of R. 

2.19 Proposition[5]: 

Let M be a faithful finitely generated multiplication R-module. Then M is small compressible module if and only 

if R is small compressible ring. 

2.20 Definition (2.1.22)[5]: 

A small compressible module M is called small critically compressible if M cannot be embedded in any proper 

quotient module M/N with 0 ≠ ܰ ≪  .ܯ

2.21 Proposition: 

A non-zero small submodule of a small critically compressible module is also small critically compressible. 

Proof:Let M be a small critically compressible module and 0 ≠ ܰ ≪  Then by proposition (2.3)N is small .ܯ

compressible. Let 0 ≠ ܪ ≪ ܰ. Then ܪ ≪ ܪ/ܰ and ܯ ≪  Suppose that there exists a monomorphism say.[6] ܪ/ܯ

:ߙ ܰ → :݂ But M is small compressible implies that there is a monomorphism say .ܪ/ܰ  ܯ → ܰ. Then the composition 

M
௙
→  ܰ

ఈ
→ ܪ/ܰ 

௜
→  gives a monomorphism from M into M/H which is a contradiction. Therefore N is small criticallyܪ/ܯ

compressible. 

2.22Proposition: 

A direct summand of a small critically compressible is small critically compressible. 

Proof: Let ܯ =  be a small critically compressible module. Then M is small compressible and by ܤ⨁ܣ

proposition (2.4), A is also small compressible. Let 0 ≠ ܭ ≪ ܭ Then .ܣ ≃ 0⨁ܭ ≪ :݂ Let.ܯ ܯ →  ,be a monomorphism ܭ
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and suppose that there is a monomorphism say, ݃: ܣ → ܣ ∕ ܯ Then the composition .ܭ
௙
→ ܭ

௜
→ ܣ

௚
→ ܣ ∕ ܭ

௝
→ ܯ ∕  is a ܭ

monomorphism (where i and j are the inclusion homomorphisms). Therefore a contradiction. Hence A is small critically 

compressible. 

We introduce the following concept: 

2.23 Definition: 

A small partial endomorphism of a module M is a homomorphism from a small submodule of M into M. 

2.24 Proposition: 

Let M be a small critically compressible module. Then every non-zero small partial endomorphism of M is a 

monomorphism.  

Proof: Let 0 ≠ ܰ ≪ :݂ andܯ ܰ → ݂ݎ݁݇/ܰ be a non-zero small partial endomorphism. Then ܯ ≃ ݂(ܰ) and 

0 ≠ ݂(ܰ) ≪ :߮ Let .[6] ܯ ݂ݎ݁݇/ܰ →  ݂(ܰ) be an isomorphism. But M is small critically compressible (by hypothesis) 

implies that there exists a monomorphism, say ݃: ܯ → ݂(ܰ), so the composition ܯ
௚
→ ݂(ܰ)

ఝషభ

ሱ⎯ሮ ݂ݎ݁݇/ܰ
௜

→  is a ݂ݎ݁݇/ܯ

monomorphism and ݂݇݁ݎ ≤ ܰ ≪ ݂ݎ݁݇  gives ܯ ≪ ݂ݎ݁݇/ܯ Thus M is embedded in .ܯ  which is a contradiction then, 

݂ݎ݁݇  = 0 , so f is a monomorphism. 

The following proposition is a partial converse of proposition (2.24) 

2.25 Proposition: 

Let M be a small compressible module such that the quotient of every submodule of M by a small submodule is 

small. If every small partial endomorphism of M is a monomorphism, then M is small critically compressible. 

Proof: Suppose that M is not small critically compressible then there is a non-zero small submodule N of M and a 

monomorphism ݂: ܯ →  Therefore M is isomorphic to a submodule, say K/N of M/N with K is a submodule of M .ܰ/ܯ

containing N. By hypothesis ܭ/ܰ ≪ ܰ and since ܰ/ܯ ≪ ܭ implies ܯ ≪ ܭ Hence the composition .[6]ܯ
గ
→ ܰ/ܭ

ఝషభ

ሱ⎯ሮ  ܯ

(where ߮: ܯ → is an isomorphism) is a monomorphism (by hypothesis) and hence 0 ܰ/ܭ = ker (߮ିଵ ߨ) = ߨݎ݁݇ = ܰ 

which is a contradiction, therefore M is small critically compressible. 

3.  SMALL RETRACTABLE MODULES  

In this section we study the concept of small retractable modules in some details. 

3.1 Definition[5]: 

An R-module M is called small retractable if Homୖ(ܯ, ܰ) ≠ 0 for each non-zero small submodule N of M. 

A ring R is called small retractable if the R-module R is small retractable. That is Homୖ(ܴ, (ܫ ≠ 0 for each non-zero small 

ideal I of R. 

3.2 Examples and Remarks: 

(1) Every retractable module is small retractable and the converse is not always hold. Consider the following 

example: 
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Let ܵ = {ቀܽ ܾ
0 ܿቁ : ܽ, ܾ, ܿ ∈ ܴ} where R be a commutative ring with identity.  ܵ is a ring with identity with respect 

to addition and multiplication of matrices. The non-zero ideals of ܵ are:    

ܫ  = ܵ, ܫ = ቄቀܽ ܾ
0 0ቁ : ܽ, ܾ ∈ ܴቅ , ܫ = ቄቀܽ 0

0 ܿቁ : ܽ, ܿ ∈ ܴቅ , ܫ = ቄቀܽ 0
0 0ቁ : ܽ ∈ ܴቅ ܫ ݎ݋   = {ቀ0 0

0 ܿቁ : ܿ ∈ ܴ} .  

In each of these cases one can easily define a non-zero homomorphism from ܵ to  ܫ, which means that ܵ is a 

retractable S-module. 

Now, let ܫ = ቄቀܽ ܾ
0 0

ቁ : ܽ, ܾ ∈ ܴቅ.we claim that ܫ is not a retractable submodule of  ܵ. 

Note that ܫ = ቀ1 ܾ
0 0

ቁ ܵ and ቀ1 ܾ
0 0

ቁ is an idempotent element and hence ܫ is an idempotent ideal. 

Let  ܬ = {ቀ0 ܾ
0 0

ቁ : ܾ ∈ ܴ}. J is a subideal of ܫ and  ܫܬ = 0  suppose that there is a homomorphism, say ݂: ܫ →   .ܬ

Then ݂(ܫ) = (ଶܫ)݂ = ܫ(ܫ)݂ ⊆ ܫܬ = 0 and hence ݂(ܫ) = 0, that means  ݂ = 0 ,therefore ܫ)݉݋ܪ, (ܬ = 0, hence ܫ is 

not retractable.on the other hand the only small submodule of I is the zero submodule, hence I is small retractable. 

(2) If M is a hollow module, then M is retractable if and only if M is small retractable.  

(3) The Z-module Q is not small retractable since ܼ ≪ ܳ but ݉݋ܪோ (ܳ, ܼ)= 0. 

(4) Every integral domain is a small retractable ring but not conversely, for instance ଺ܼ as a ଺ܼ-module is small 

retractable but ଺ܼis not an integral domain. 

(5) Every semisimple module is small retractable, however the converse is not true in general, for example Z is 

small retractable Z-module but it is not semisimple. 

(6) Every module over a semisimple ring is small retractable. 

(7) Every small compressible module is small retractable and the converse is not true in general, for example the 

Z-module, ଶܼସis small retractable but not small compressible since {0ത, 12ത} is the only small submodule in ଶܼସ and 

݂: ܼଶସ → {0ത, 12തതതത} such that ݂(̅ݔ) = ݔ̅ for all ݔ12̅ ∈ ଶܼସ is a homomorphism which is not monomorphism.  

(8) Let M be an R-module. Then M is a small retractable R-module if and only if M is a small retractable ܴ/

 .module-ܯ݊݊ܽ

3.3 Proposition: 

Let M be an R-module such that ݀݊ܧோ  is a Boolean ring. If M is small retractable, then every non-zero small (ܯ)

submodule of M is also small retractable. 

Proof:Let N be a small submodule of M  and K be a small submodule of N. Then ݉݋ܪ R ,ܯ) (ܭ ≠ 0. Let 

݂: ܯ → :݂݅ be a non-zero homomorphism. Hence ܭ ܰ → :݅ is a homomorphism where ܭ ܰ →  is the inclusion ܯ

homomorphism. We claim that ݂݅ ≠ 0, Suppose that ݂݅ = 0, then (݂݅)(ܰ) = 0 = ݂(ܰ),so ܰ ⊆ ܭ  and hence ݂ݎ݁ܭ ⊆

(ܯ)݂ which implies that ,݂ݎ݁ܭ ⊆ ((ܯ)݂)݂ therefore ݂ݎ݁ܭ = 0. Let ݆: ܭ →  be the inclusion homomorphism. Then ܯ

݆݂ ∈ ݀݊ܧ R (ܯ)݂݆  and(ܯ) = (ܯ)ଶ(݂݆)  ݐݑܾ (ܯ)݂ = (ܯ)(݂݆)(݂݆) = ݆݂൫݂(ܯ)൯ = ݆(݂൫݂(ܯ)൯ = ݆(0) =
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0, and(݆݂)ଶ(ܯ) = ݀݊ܧ since(ܯ)(݂݆) R ൯(ܯ)is a Boolean ring.Hence   ݆൫݂ (ܯ) = (ܯ)݂ = 0. Therefore ݂ = 0 which is a 

contradiction, thus ݂݅ ≠ 0, therefore ܰ is small retractable. 

3.4 Proposition: 

Let ܯଵand ܯଶbe two isomorphic R-modules. Then ܯଵ is small retractable if and only if ܯଶis small retractable. 

Proof: Assume that ܯଵis retractable and let   ߮ ∶ ܯ 1 → ܯ  2  be an isomorphism. Let N be a mall submodule of 

ܯ 2 . Then ߮ିଵ(ܰ)Be a non-zero small submodule of 1ܯ Put  ܭ = ߮ିଵ(ܰ). Let ݂: ܯ 1 →  be a non-zero homomorphismܭ

and let݃
K

 then ݃: ܭ → ܯ 2  is a homomorphism and ݃(݇) = ߮൫߮ିଵ(ܰ)൯ = ܰ, hence ݃: ܭ → ܰ is a homomorphism. 

Now, we have the composition ܯ 2
ఝషభ

ሱ⎯ሮ ܯ 1
௙
→ ܭ

௚
→ ܰ. Let ℎ = ݂݃߮ିଵ, then  ℎ ∈ ݉݋ܪ ൬ܯ 2 , ܰ൰.If ℎ = 0,then 0 =

݃(݂ ቆ߮ିଵ ൬ܯ 2 ൰ቇ = ݃(݂ ൬ܯ 1 ൰)implies that  ݂ ൬1ܯ ൰ ⊆ ݃ݎ݁ܭ ⊆ ߮ݎ݁ܭ = 0.Thus ݂ ൬1ܯ ൰ = 0, which is a contradiction. 

Therefore ݉݋ܪோ ܯ)  2 , ܰ) ≠ 0 which is what we wanted. 

3.5 Corollary: 

If R is a small retractable ring, then every faithful cyclic R-module is also small retractable. 

3.6 Remark: 

A direct summand (and a homomorphic image, or a quotient module) of a small retractable module may not be 

small retractable in general. 

For example, the Z-module ܼ⨁ܼ௣∞  is small retractable, however ܼ௣∞ is not small retractable, ܯ/ܼ ≃ ܼ௣∞ is not 

small retractable since ܼ௣∞ is a hollow Z-module. 

3.7 Proposition: 

If ܯଵ and  ܯଶare small retractable modules such that ܽ ଵܯ݊݊ +annܯଶ = ܴ then ܯଵ⨁ܯଶis also small retractable. 

Proof: Let 0 ≠ ܭ ≪ ଵܯ݊݊ܽ ଶ. Asܯ⨁ଵܯ + ଶܯ݊݊ܽ = ܴby [9]gives ܭ = ଵܰ ⊕ ܰଶ with ଵܰ ≤ ଵ and ܰଶܯ ≤

ଶ.But ଵܰܯ ⊕ ଶܰ ≪ ଶ implies ଵܰܯ⨁ଵܯ ≪ ଵand ଶܰܯ ≪ ,ଵܯ)݉݋ܪଶ [6].Thereforeܯ ଵܰ) ≠ 0and ܯ)݉݋ܪଶ, ଶܰ) ≠ 0. Let 

0 ≠ ݂: ଵܯ → ଵܰ and 0 ≠ ݃: ,ଶܯ → ଶܰ.Define ℎ: ଶܯ⨁ଵܯ → ଵܰ ⊕ ଶܰ by ℎ(݉ଵ, ݉ଶ) = (݂(݉ଵ), ݃(݉ଶ)) clearly h is a 

homomorphism. If ℎ = 0, then  ℎ(݉ଵ, ݉ଶ) = 0 for all ݉ଵ ∈ ଵ,݉ଶܯ ∈ ଶ,so ݂(݉ଵ)ܯ = 0 and ݃(݉ଶ) = 0 for all ݉ଵ ∈

ଵ,݉ଶܯ ∈ ݂ ଶ, which is a contradiction sinceܯ ≠ 0 and ݃ ≠ 0. Therefore ܯ)݉݋ܪଵ⨁ܯଶ, (ܭ ≠ 0. 

3.8 Proposition: 

Let M be a small retractable module. If every non-zero submodule of M contains a non-zero small submodule then 

M is retractable. 

Proof: Let 0 ≠ ܰ ≤ By hypothesis N contains a non-zero small submodule. Let 0 .ܯ ≠ ܭ ≪ ܰ. Then ܭ ≪

,ܯ)݉݋ܪ Hence.[4] ܯ (ܭ ≠ 0   (since M is small retractable), and therefore ܯ)݉݋ܪ, ܰ) ≠ 0 so M is retractable. 
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As it was mentionedthat every small compressible module is small retractable and the converse need not be true in 

general, we recall in the following results that the converse holds under certain conditions: 

3.9 Proposition: 

Let M be a small retractable R-module. If every non-zero endomorphism of M is a monomorphism, then every     

non-zero element of ܯ)݉݋ܪ, ܰ) is a monomorphism from any non-zero small submodule N of M. 

Proof: Let 0 ≠ ܰ ≪ :݂ and let ܯ ܯ → ܰ be a non-zero homomorphism. Then ݂݅ ∈ ݂݅ and (ܯ)݀݊ܧ ≠ 0. For if ݂݅ = 0, 

then ݂݅(ܯ) = (ܯ)݂ = 0 implies ݂ = 0 which is a contradiction. Hence 0 ≠ ݂݅ ∈  and by hypothesis ݂݅ is a (ܯ)݀݊ܧ

monomorphism which gives that f is a monomorphism. 

3.10 Corollary: 

Let M be a small retractable module such that every non-zero endomorphism of  M is a monomorphism then M is 

small compressible. 

3.11 Corollary[5]: 

Let M be a small retractable module. If M is quasi-Dedekind, then M is small compressible. 

3.12 Corollary: 

Let M be a finitely generated module such that every non-zero endomorphism of M is a monomorphism then M is 

small retractable if and only if M is small prime and small uniform. 

Proof: From corollary (3.10), M is small compressible and according to proposition (2.12), the result follows. 

3.13 Corollary: 

Let M be a small retractable quasi-Dedekind module. Then M is S-monoform if and only if each non-zero small 

submodule of M is quasi-Dedekind. 

Proof: By corollary (3.11), M is small compressible and by [5], M is S-monoform. 

From corollary (3.13) and theorem (2.13) we get: 

3.14 Corollary: 

 If M is small retractable quasi-Dedekind module then the following statements are equivalent: 

(1) M is small compressible. 

(2) M isomorphic to an R-module of the form A/P where P is a prime ideal of R and A is an ideal of R containing 

P. 

(3) M is isomorphic to a non-zero submodule of a finitely generated small uniform and small prime R-module. 

4. SOME CHARACTERIZATIONS OF SMALL RETRACTABLE MODULES 

We shall introduce some characterizations of small retractable modules 
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4.1 Proposition: 

An R-module M is called small retractable if and only if there exists 0 ≠ ݂ ∈ ݀݊ܧ R ݂ ݉ܫ such that (ܯ) ⊆ ܰ for 

each non-zero small submodule N of M. 

Proof: (⇒) Suppose that M is small retractable. Let 0 ≠ ܰ ≪ ݉݋ܪ Then .ܯ R ,ܯ) ܰ) ≠ 0. Let ݃: ܯ → ܰ be a     

non-zero homomorphism and ݂ = ݅݃ where  ݅: ܰ → ݂  be the inclusion homomorphism, then ܯ ∈ ݀݊ܧ  R ݂ and (ܯ) ≠ 0  

since ݂ ≠0 and i is a monomorphism. Clearly,  ݂(ܰ) = ݃(ܰ) ⊆ ܰ. 

(⇐) Let 0 ≠ ܰ ≪ :݂ By hypothesis, there exists a non-zero endomorphism .ܯ ܯ → (ܯ)݂ and ܯ ⊆ ܰ. Therefore 

݂: ܯ → ܰ is a non-zero homomorphism this completes the proof. 

4.2 Proposition: 

 An R-module ܯ is small retractable if and only if for each 0 ≠ ݔ ∈ ݔܴ with ܯ ≪ ݉݋ܪ , ܯ R ,ܯ) (ݔܴ ≠ 0. 

Proof:  (⇒) Is obvious. 

(⇐) To prove M is small retractable. Let 0 ≠ ܰ ≪ and let 0  ܯ ≠ ݔ ∈ ܰ, then ܴݔ ≪ ܰ, so by hypothesis, 

,ܯ)݉݋ܪ (ݔܴ ≠ 0, which implies that (ܯ, ܰ) ≠ 0  and therefore M is small retractable. 

4.3 Proposition: 

 Let M be a fully invariant R-module such that ݂(ܯ) is a direct summand of M for each ݂ ∈ ݀݊ܧ R  Then M is .(ܯ)

small retractable if and only if there exists 0 ≠ ݂ ∈ ݀݊ܧ R  .is small retractable (ܯ)݂ such that (ܯ)

Proof:(⇒) Let ݅ெbe the identity endomorphism of M then ݅ெ (ܯ) =  .is small retractable ܯ

(⇐) To prove M is small retractable. Let 0 ≠ ܰ ≪ :݂ By hypothesis there is a non-zero homomorphism .ܯ ܯ →

ܰ is small retractable. Since (ܯ)݂ and ܯ ≪ (ܰ)݂ then ,ܯ ≪ (ܰ)݂ but ,[6]ܯ ≤ (ܯ)݂ ≤  is a direct (ܯ)݂ and ܯ

summand of M (by hypothesis) implies that ݂(ܰ) ≪  is small retractable, so there is a non-zero (ܯ)݂ As . [6](ܯ)݂

homomorphism ݃: (ܯ)݂ → ݂(ܰ). But ݂(ܰ) ⊆ ܰ since N is invariant therefore the composition ܯ
௙
→ (ܯ)݂

௚
→ ݂(ܰ)

௜
→ ܰ 

gives ݂݅݃ ∈ ,ܯ)݉݋ܪ ܰ) and ݂݅݃ ≠ 0, for if  ݂݅݃ = 0, then 0 = (ܯ)݂݃݅ = ݃ implies (ܯ)݂݃ = 0 which is a contradiction. 

Therefore M is small retractable.   

4.4 Definition[2]: 

An R-module M is called small projective if for each small epimorphism݂: ܣ → -where A and B are any two R)ܤ

modules) and for any homomorphism ݃: ܯ → :there exists a homomorphism ℎ ܤ ܯ → such that ݂ℎ ܣ = ݃. That is the 

following diagram is commutative. 
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where an epimorphism݂: ܣ → ݂ݎ݁݇ is called small epimorphism provided that ܤ ≪  .[4]ܣ

4.5 Definition[3]: 

A ring R is called V-ring if every simple R-module is injective. 

4.6 Proposition: 

If R is a V-ring (or a von-Neumann regular ring), then every small projective R-module is small retractable. 

Proof:Let M be a small projective R-module. Let 0 ≠ ݔ ∈ ݔܴ such that ܯ ≪  We have to show that .ܯ

,ܯ)݉݋ܪ (ݔܴ ≠ 0. Let A be a maximal submodule of Rx. Then Rx/A is a simple R-module and hence Rx/A is injective       

R-module (since R is a V-ring). 

Consider the following diagram: 

 

 

Since Rx/A is injective implies that there exists ݂: ܯ → ݂݅ such that ܣ/ݔܴ = ݂ݎ݁݇ Note that . ߨ = ܣ ≤ ݔܴ ≪  ,ܯ

so ݂݇݁ݎ ≪ :and M being small projective implies that there exists a homomorphism ℎ ܯ ܯ →  which makes the ݔܴ

following diagram commutative        
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That is ߨℎ = ݂. We get ℎ ∈ ,ܯ)݉݋ܪ It is left to show that ℎ.(ݔܴ ≠ 0. If ℎ = 0, then ℎ(ܯ) = 0 and ܣ = (0)ߨ =

݂݅ On the other hand .(ܯ)݂ = (ݔܴ)݂݅ gives ߨ = (ݔܴ)ߨ = ݔܴ + (ݔܴ)݂ Thus .ܣ = ݔܴ + ܣ ⊆ ݔܴ Therefore .ܣ ⊆  implies ܣ

ܣ = which is a contradiction since A is a maximal submodule of Rx, and hence ℎ ݔܴ ≠ 0 which proves that M is small 

retractable. 

4.7 Definition[2]: 

A ring R is called cosemisimple if ܴܽ݀(ܯ) = 0, for each R-module M. where ܴܽ݀(ܯ) = the sum of all small 

submodules of M. 

4.8 Proposition[1]: 

A ring R is cosemisimple if and only if every R-module is small projective. 

The following result follows directly from propositions (4.7) and (4.8) 

4.9 Corollary: 

If R is a cosemisimple V-ring, then every R-module is small retractable. 

A relation between small uniform module and small retractable module is discussed under, certain conditions in the 

following proposition: 

4.10 Proposition: 

Let R be an integral domain. Then every faithful finitely generated small uniform R-module is small retractable 

Proof:Let M be a finitely generated small uniform R-module. Then ܯ = 1ݔܴ + ݔܴ 2 + ⋯ + ݔܴ n  where   ݔ௜ ∈

݅∀ܯ = 1,2, … . . , ݊. Let 0 ≠ ܰ ≪ ,Then q .ܯ … . . , ݊ there exists ݐ௜ ∈ ܴ, ௜ݐ ≠ 0 and 0≠ ௜ݐ ௜ݔ   ∈ ܰ[7]. Let  ݐ = ଶݐଵݐ … … . ௡ݐ . 

Then ݐ ≠ 0 and 0≠ ௜ݐ ௜ݔ   ∈ ܰ for all ݅ = 1,2, … . . , ݊ and for each ݉ ∈ ݉  ,ܯ =  
1
 

n

i i
i

r x

  withݎ௜ ∈ ܴ ∀݅ = 1,2, … … , ݊. 

and ݉ݐ =
1
  (  )

n

i i
i

t r x

 =

1
   ( )

n

i i
i

r t x

  and hence ݉ݐ ∈ ܰ, ∀݉ ∈ :݂ So we can define .ܯ ܯ → ܰ by ݂(݉) =

݉∀    ݉ݐ ∈ ,ܯ)݉݋ܪ Clearly ݂ is anon-zero homomorphism, hence .ܯ ܰ) ≠ 0, for if ݂ = 0, then ݉ݐ = 0 for all ݉ ∈  ܯ

implies ݐ = 0 (since M is faithful), but ݐ ≠ 0 therefore a contradiction. Hence M is retractable.  

4.11 Proposition: 

Let R be a small retractable ring and M be a faithful finitely generated multiplication R-module. Then M is small 

retractable. 

Proof: Let 0 ≠ ܰ ≪ ܰ Then .ܯ =  for some non-zero ideal I of R (since M is multiplication R-module). But ܯܫ

ܰ ≪ ܫ and M is a faithful finitely generated multiplication R-module implies that ܯ ≪ ܴ [6] therefore ݉݋ܪ(ܴ, (ܫ ≠ 0 

(since R is small retractable). Let ݂: ܴ → be a non-zero homomorphism. Put ݂(1) ܫ = ܽ for some ܽ ∈ ܽ and ܫ ≠ 0. Define 

݃: ܯ → ܰ by ݃(݉) = ܽ݉ for all ݉ ∈ ݃ It can be easily checked that g is a well-defined homomorphism, if . ܯ = 0, then 
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ܽ݉ = 0 for all ݉ ∈ ܽ and therefore ܯ ∈ ܽ hence ,(ܯ)݊݊ܽ = 0 (since M is faithful) but ܽ ≠ 0, therefore a contradiction 

and hence ܯ)݉݋ܪ, ܰ) ≠ 0. Therefore M is small retractable. 

4.12 Remark: 

The ring Z is small retractable but the Z-module Q is not small retractable, in fact Q is not finitely generated 

multiplication Z-module. This means that these two conditions cannot be dropped in the proposition (4.11).  
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